Instructions for Use
Antibody to Etanercept (Enbrel®) ELISA

SHIKARI® S-ATE

Enzyme immunoassay for the qualitative determination (screening) of antibodies to etanercept (Enbrel®) in serum and plasma

REF TR-AETA v2 ▼ 12 x 8 ⌁ 2-8°C

Revision # 2.2 August 2017

Matriks Biotek® Laboratories
www.matriksbiotek.com
SHIKARI S-ATE

Etanercept (Enbrel®) antibodies qualitative analyses

Required Volume (µl) 10
Total Time (min) 10
Sample Serum, plasma
Sample Number 96
Detection Limit (ng/mL) -
Spike Recovery (%) -
Shelf Life (year) 1
Intended Use

The **Matriks Biotek®** Antibody to **Etanercept (Enbrel®)** (**ATE**) Enzyme-Linked-Immuno-Sorbent-Assay (ELISA) Kit is intended for the qualitative determination of antibodies to etanercept (Enbrel®) in serum and plasma. It is for professional use only.

Summary and Explanation

Etanercept (Enbrel®) is a dimeric fusion protein consisting of the extracellular ligand-binding portion of the human 75 kilodalton (p75) tumor necrosis factor receptor (TNFR) linked to the Fc portion of human IgG1. The Fc component of etanercept contains the CH2 domain, the CH3 domain and hinge region, but not the CH1 domain of IgG1. Etanercept consists of 934 amino acids and has an apparent molecular weight of approximately 150 kilodaltons. Etanercept binds specifically to tumor necrosis factor (TNF) and blocks its interaction with cell surface TNF receptors. Elevated levels of TNF are found in involved tissues and fluids of patients with rheumatoid arthritis (RA), psoriatic arthritis, ankylosing spondylitis (AS), and plaque psoriasis. Etanercept inhibits binding of both TNFα and TNFβ (lymphotoxin alpha [LTα]) to cell surface TNFRs, rendering TNF biologically inactive.

However, the use of etanercept was associated to the development of anti-etanercept antibodies in various percentages of patients during therapy with the drug Enbrel®. This might lead to severe complications. The **Matriks Biotek®** Antibody to Etanercept ELISA Kit can be efficiently used for monitoring anti-etanercept antibodies during therapy and offers the clinician a tool for decision on possible preventive measures such as possible addition of immunosuppressive drug to reduce anti-etanercept antibodies.

With this **Matriks Biotek®** ELISA test, antibodies to etanercept can be detected in patients receiving **etanercept (Enbrel®)**.
Test Principle

The *Matriks Biotek*® Antibody to *Etanercept (Enbrel)*® ELISA is a sandwich assay for the determination of antibodies against etanercept in serum and plasma samples. During the first incubation period, the drug etanercept coated on the wall of the microtiter wells captures the antibodies to etanercept in patient serum and plasma samples. After washing away the unbound components from samples, a Peroxidase-labelled conjugate is added to each well and then incubated. After a second washing step, the bound enzymatic activity is detected by addition of tetramethylbenzidine (TMB) chromogen-substrate. Finally, the reaction is terminated with an acidic stop solution. The intensity of the reaction color is directly proportional to the concentration of antibodies to etanercept in sample.
Warnings and Precautions

1. For professional use only.

2. Before starting the assay, read the instructions completely and carefully. Use the valid version of the package insert provided with the kit. Be sure that everything is understood. For further information (clinical background, test performance, automation protocols, alternative applications, literature, etc.) please refer to the local distributor.

3. In case of severe damage of the kit package please contact Matriksbiotek or your supplier in written form, latest one week after receiving the kit. Do not use damaged components in test runs, but keep safe for complaint related issues.

4. Obey lot number and expiry date. Do not mix reagents of different lots. Do not use expired reagents.

5. Follow good laboratory practice and safety guidelines. Wear lab coats, disposable latex gloves and protective glasses where necessary.

6. Reagents of this kit containing hazardous material may cause eye and skin irritations. See MATERIALS SUPPLIED and labels for details.

7. Chemicals and prepared or used reagents have to be treated as hazardous waste according the national biohazard safety guidelines or regulations.

8. Avoid contact with Stop solution. It may cause skin irritations and burns.

9. Some reagents contain sodium azide (NaN₃) as preservatives. In case of contact with eyes or skin, flush immediately with water. NaN₃ may react with lead and copper plumbing to form explosive metal azides. When disposing reagents, flush with large volume of water to avoid azide build-up.

10. All reagents of this test kit containing human serum or plasma have been tested and were found negative for HIV I/II, HBsAg and HCV by FDA approved procedures. However, a presence of these or other infectious agents cannot be excluded absolutely and therefore reagents should be treated as potential biohazards in use and for disposal.
Storage and Stability

The kit is shipped at ambient temperature and should be stored at 2-8°C. Keep away from heat or direct sun light. The storage and stability of specimen and prepared reagents is stated in the corresponding chapters.

The strips of microtiter plate is stable up to the expiry date of the kit in the broken, but tightly closed bag when stored at 2–8°C.

Specimen Collection and Storage

Serum, Plasma (EDTA, Heparin)*

The usual precautions for venipuncture should be observed. It is important to preserve the chemical integrity of a blood specimen from the moment it is collected until it is assayed. Do not use grossly hemolytic, icteric or grossly lipemic specimens. Samples appearing turbid should be centrifuged before testing to remove any particulate material.

<table>
<thead>
<tr>
<th>Storage:</th>
<th>2-8°C</th>
<th>-20°C</th>
<th>Stability:</th>
<th>7 d</th>
<th>6 mon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Keep away from heat or direct sun light</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Avoid repeated freeze-thaw cycles</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*. Etanercept (Enbrel®) infusion camouflages/masks the presence of antibody to etanercept in serum/plasma samples. Therefore, blood sampling time is critical for detection of etanercept. Matriks Biotek® Laboratories propose to obtain blood sample just before the infusion of Etanercept (Enbrel®) or at least 2 weeks after the infusion of Etanercept (Enbrel®).
Materials Supplied

<table>
<thead>
<tr>
<th>Volume</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 12 x 8 MTP</td>
<td>Microtiter Plate</td>
<td>Break apart strips. Microtiter plate with 12 rows each of 8 wells precoated with etanercept.</td>
</tr>
<tr>
<td>1 x 0.25 mL RCTV CNTR</td>
<td>Reactive Control</td>
<td>Ready-to-use. Contains etanercept-reactive reagent, human serum, stabilizers and <0.1% NaN₃.</td>
</tr>
<tr>
<td>1 x 0.5 mL NEG CNTR</td>
<td>Negative Control</td>
<td>Ready-to-use. Contains human serum and <0.1% NaN₃.</td>
</tr>
<tr>
<td>1 x 12 mL ASSAY BUF</td>
<td>Assay Buffer</td>
<td>Blue colored. Ready to use. Contains proteins and <0.1% NaN₃.</td>
</tr>
<tr>
<td>1 x 12 mL POD CONJ</td>
<td>Peroxidase Conjugate</td>
<td>Red colored. Ready to use. Contains peroxidase (POD) conjugate, stabilizer and preservatives.</td>
</tr>
<tr>
<td>1 x 12 mL TMB SUBS</td>
<td>TMB Substrate Solution</td>
<td>Ready to use. Contains TMB</td>
</tr>
<tr>
<td>1 x 12 mL TMB STOP</td>
<td>TMB Stop Solution</td>
<td>Ready to use. 1N HCl.</td>
</tr>
<tr>
<td>1 x 50 mL WASHBUF CONC</td>
<td>Wash Buffer, Concentrate (20x)</td>
<td>Contains Buffer with Tween 20.</td>
</tr>
<tr>
<td>2 x 1 ADH FILM</td>
<td>Adhesive Film</td>
<td>For covering of Microtiter Plate during incubation.</td>
</tr>
</tbody>
</table>
Materials Required but not Supplied

1. Micropipettes (< 3% CV) and tips to deliver 5-1000 µL.
2. Calibrated measures.
3. Tubes (1 mL) for sample dilution.
4. Wash bottle, automated or semi-automated microtiter plate washing system.
5. Microtiter plate reader capable of reading absorbance at 450/650 nm.
6. Bidistilled or deionised water, paper towels, pipette tips and timer.

Procedure Notes

1. Any improper handling of samples or modification of the test procedure may influence the results. The indicated pipetting volumes, incubation times, temperatures and pretreatment steps have to be performed strictly according to the instructions. Use calibrated pipettes and devices only.

2. Once the test has been started, all steps should be completed without interruption. Make sure that required reagents, materials and devices are prepared ready at the appropriate time. Allow all reagents and specimens to reach room temperature (18-25 °C) and gently swirl each vial of liquid reagent and sample before use. Mix reagents without foaming.

3. Avoid contamination of reagents, pipettes and wells/tubes. Use new disposable plastic pipette tips for each reagent, standard or specimen. Do not interchange caps. Always cap not used vials. Do not reuse wells/tubes or reagents.

4. Use a pipetting scheme to verify an appropriate plate layout.

5. Incubation time affects results. All wells should be handled in the same order and time sequences. It is recommended to use an 8-channel Micropipettor for pipetting of solutions in all wells.

6. Microplate washing is important. Improperly washed wells will give erroneous results. It is recommended to use a multichannel pipette or an automatic microplate washing system. Do not allow the wells to dry between incubations. Do
not scratch coated wells during rinsing and aspiration. Rinse and fill all reagents with care. While rinsing, check that all wells are filled precisely with Wash Buffer, and that there are no residues in the wells.

7. Humidity affects the coated wells/tubes. Do not open the pouch until it reaches room temperature. Unused wells/tubes should be returned immediately to the resealed pouch including the desiccant.

Preparation of Component

<table>
<thead>
<tr>
<th>Dilute/ dissolve</th>
<th>Component</th>
<th>with Diluent</th>
<th>Relation</th>
<th>Remarks</th>
<th>Storage</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mL</td>
<td>Wash Buffer*</td>
<td>Up to 200 mL</td>
<td>1:20</td>
<td>Warm up at 37°C to dissolve crystals. Mix vigorously.</td>
<td>2-8 °C</td>
<td>2 w</td>
</tr>
</tbody>
</table>

*. Prepare Wash Buffer before starting assay procedure.
Test Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pipette 100µl of Assay Buffer non-exceptionally into each of the wells to be used.</td>
</tr>
</tbody>
</table>
| 2 | Pipette 10 µL of ready-to use Negative Control, Positive Control, and Samples into the respective wells of microtiter plate.
Wells
- A1: Negative Control
- B1: Negative Control
- C1: Positive Control
- D1 and on: Sample (Serum/Plasma) |
| 3 | Cover the plate with adhesive film. Briefly mix contents by gently shaking the plate. Incubate 60 min at room temperature (18-25°C). |
| 4 | Remove adhesive film. Discard incubation solution. Wash plate 3 times each with 300 µL of diluted Wash Buffer. Remove excess solution by tapping the inverted plate on a paper towel. |
| 5 | Pipette 100 µL of ready-to use Peroxidase Conjugate into each well. |
| 6 | Cover the plate with adhesive film. Incubate 60 min at room temperature (18-25°C). |
| 7 | Remove adhesive film. Discard incubation solution. Wash plate 3 times each with 300 µL of diluted Wash Buffer. Remove excess solution by tapping the inverted plate on a paper towel. |
| 8 | Pipette 100 µL of TMB Substrate Solution into each well. |
| 9 | Incubate 20 min (without adhesive film.) at room temperature (18-25°C) in the dark. |
| 10 | Stop the substrate reaction by adding 100 µL of Stop Solution into each well. Briefly mix contents by gently shaking the plate. Color changes from blue to yellow. |
| 11 | Measure optical density with a photometer at 450/650 nm within 30 min after pipetting of the Stop Solution. |
Interpretation of Results

For the run to be valid, the OD450/650 nm of Positive Control should be ≥ 1.00 and the OD450/650 nm of each Negative Control should be <0.200, if not, improper technique or reagent deterioration may be suspected and the run should be repeated.

The results are evaluated by a cut-off value which is estimated by multiplying the mean OD450/650nm of the negative controls by 3.

E.g.;
If “Sample OD450/650 the mean OD450/650 of Negative Controls” is ≥3, the sample is POSITIVE If “Sample OD450/650 the mean OD450/650 of Negative Controls” is <3, the sample is NEGATIVE
References

3. Marvin M. Goldenberg, etanercept, a Novel Drug for the Treatment of Patients with Severe, Active Rheumatoid Arthritis, Clinical Therapeutics, 1999; 21: 75-87.

